A note on compressed sensing and the complexity of matrix multiplication

نویسندگان

  • Mark A. Iwen
  • Craig V. Spencer
چکیده

We consider the conjectured O(N2+ ) time complexity of multiplying any two N × N matrices A and B. Our main result is a deterministic Compressed Sensing (CS) algorithm that both rapidly and accurately computes A · B provided that the resulting matrix product is sparse/compressible. As a consequence of our main result we increase the class of matrices A, for any given N × N matrix B, which allows the exact computation of A · B to be carried out using the conjectured O(N2+ ) operations. Additionally, in the process of developing our matrix multiplication procedure, we present a modified version of Indyk’s recently proposed extractor-based CS algorithm [12] which is resilient to noise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Block-Wise random sampling approach: Compressed sensing problem

The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...

متن کامل

Complexity-Matching Universal Signal Estimation in Compressed Sensing

We study the compressed sensing (CS) signal estimation problem where an input signal is measured via a linear matrix multiplication under additive noise. While this setup usually assumes sparsity or compressibility in the input signal during recovery, the signal structure that can be leveraged is often not known a priori. In this paper, we consider universal CS recovery, where the statistics of...

متن کامل

Signal Recovery in Compressed Sensing via Universal Priors

We study the compressed sensing (CS) signal estimation problem where an input is measured via a linear matrix multiplication under additive noise. While this setup usually assumes sparsity or compressibility in the observed signal during recovery, the signal structure that can be leveraged is often not known a priori. In this paper, we consider universal CS recovery, where the statistics of a s...

متن کامل

A New Parallel Matrix Multiplication Method Adapted on Fibonacci Hypercube Structure

The objective of this study was to develop a new optimal parallel algorithm for matrix multiplication which could run on a Fibonacci Hypercube structure. Most of the popular algorithms for parallel matrix multiplication can not run on Fibonacci Hypercube structure, therefore giving a method that can be run on all structures especially Fibonacci Hypercube structure is necessary for parallel matr...

متن کامل

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 109  شماره 

صفحات  -

تاریخ انتشار 2009